Derivace součtu a rozdílu funkcí
editovat
Derivace součinu konstanty a funkce
editovat
Vzorce pro derivování elementárních funkcí
editovat
Je-li
f
(
x
)
=
c
{\displaystyle f(x)=c}
, kde
c
∈
R
{\displaystyle c\in \mathbb {R} }
, pak
f
′
(
x
)
=
0
{\displaystyle f'(x)=0}
.
f
′
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
=
lim
h
→
0
c
−
c
h
=
lim
h
→
0
0
h
=
0
{\displaystyle f'(x)=\lim \limits _{h\rightarrow 0}{\frac {f(x+h)-f(x)}{h}}=\lim \limits _{h\rightarrow 0}{\frac {c-c}{h}}=\lim \limits _{h\rightarrow 0}{\frac {0}{h}}=0}
.
Je-li
f
(
x
)
=
x
n
{\displaystyle f(x)=x^{n}}
, kde
n
∈
N
{\displaystyle n\in \mathbb {N} }
pak
f
′
(
x
)
=
n
⋅
x
n
−
1
{\displaystyle f'(x)=n\cdot x^{n-1}}
.
f
′
(
x
)
=
lim
h
→
0
(
x
+
h
)
n
−
x
n
h
=
lim
h
→
0
x
n
+
(
n
1
)
x
n
−
1
h
+
…
+
(
n
k
)
x
n
−
k
h
k
+
…
+
h
n
−
x
n
h
=
=
lim
h
→
0
(
n
1
)
x
n
−
1
h
+
…
+
(
n
k
)
x
n
−
k
h
k
+
…
+
h
n
h
=
n
⋅
x
n
−
1
{\displaystyle {\begin{array}{rcl}f'(x)&=&\lim \limits _{h\rightarrow 0}{\frac {(x+h)^{n}-x^{n}}{h}}=\lim \limits _{h\rightarrow 0}{\frac {x^{n}+{\begin{pmatrix}n\\1\end{pmatrix}}x^{n-1}h+\ldots +{\begin{pmatrix}n\\k\end{pmatrix}}x^{n-k}h^{k}+\ldots +h^{n}-x^{n}}{h}}=\\&=&\lim \limits _{h\rightarrow 0}{\frac {{\begin{pmatrix}n\\1\end{pmatrix}}x^{n-1}h+\ldots +{\begin{pmatrix}n\\k\end{pmatrix}}x^{n-k}h^{k}+\ldots +h^{n}}{h}}=n\cdot x^{n-1}\end{array}}}
.
Je-li
f
(
x
)
=
sin
x
{\displaystyle f(x)=\sin x}
, pak
f
′
(
x
)
=
cos
x
{\displaystyle f'(x)=\cos x}
.
f
′
(
x
)
=
lim
h
→
0
sin
(
x
+
h
)
−
sin
x
h
=
lim
h
→
0
cos
x
⋅
sin
h
+
sin
x
⋅
cos
h
−
sin
x
h
=
lim
h
→
0
cos
x
⋅
sin
h
h
=
cos
x
{\displaystyle f'(x)=\lim \limits _{h\rightarrow 0}{\frac {\sin(x+h)-\sin x}{h}}=\lim \limits _{h\rightarrow 0}{\frac {\cos x\cdot \sin h+\sin x\cdot \cos h-\sin x}{h}}=\lim \limits _{h\rightarrow 0}{\frac {\cos x\cdot \sin h}{h}}=\cos x}
.
Je-li
f
(
x
)
=
cos
x
{\displaystyle f(x)=\cos x}
, pak
f
′
(
x
)
=
−
sin
x
{\displaystyle f'(x)=-\sin x}
.
f
′
(
x
)
=
lim
h
→
0
cos
(
x
+
h
)
−
cos
x
h
=
lim
h
→
0
cos
x
⋅
cos
h
−
sin
x
⋅
sin
h
−
cos
x
h
=
lim
h
→
0
−
sin
x
⋅
sin
h
h
=
−
sin
x
{\displaystyle f'(x)=\lim \limits _{h\rightarrow 0}{\frac {\cos(x+h)-\cos x}{h}}=\lim \limits _{h\rightarrow 0}{\frac {\cos x\cdot \cos h-\sin x\cdot \sin h-\cos x}{h}}=\lim \limits _{h\rightarrow 0}{\frac {-\sin x\cdot \sin h}{h}}=-\sin x}
.
Je-li
f
(
x
)
=
t
g
x
{\displaystyle f(x)=\mathop {\rm {tg\ }} x}
a
g
(
x
)
=
c
o
t
g
x
{\displaystyle g(x)=\mathop {\rm {cotg\ }} x}
, pak
f
′
(
x
)
=
1
cos
2
x
{\displaystyle f'(x)={\frac {1}{\cos ^{2}x}}}
a
g
′
(
x
)
=
−
1
sin
2
x
{\displaystyle g'(x)=-{\frac {1}{\sin ^{2}x}}}
.
Přímou aplikací pravidla pro derivaci podílu ihned plyne tvrzení. Například
(
t
g
x
)
′
=
(
sin
x
cos
x
)
′
=
cos
2
x
+
sin
2
x
cos
2
x
=
1
cos
2
x
{\displaystyle (\mathop {\rm {tg\ }} x)'=\left({\frac {\sin x}{\cos x}}\right)'={\frac {\cos ^{2}x+\sin ^{2}x}{\cos ^{2}x}}={\frac {1}{\cos ^{2}x}}}
.
Funkce arkus sinus a arkus kosinus
editovat
Je-li
f
(
x
)
=
arcsin
x
{\displaystyle f(x)=\arcsin x}
a
g
(
x
)
=
arccos
x
{\displaystyle g(x)=\arccos x}
, pak
f
′
(
x
)
=
1
1
−
x
2
{\displaystyle f'(x)={\frac {1}{\sqrt {1-x^{2}}}}}
a
g
′
(
x
)
=
−
1
1
−
x
2
{\displaystyle g'(x)=-{\frac {1}{\sqrt {1-x^{2}}}}}
.
Označíme-li si
arcsin
x
=
y
{\displaystyle \arcsin x=y}
, pak
x
=
sin
y
{\displaystyle x=\sin y}
. Přímou aplikací pravidla pro derivaci inverzní funkce dostaneme:
(
arcsin
x
)
′
=
1
(
sin
y
)
′
=
1
cos
y
=
1
1
−
sin
2
y
=
1
1
−
x
2
{\displaystyle (\arcsin x)'={\frac {1}{(\sin y)'}}={\frac {1}{\cos y}}={\frac {1}{\sqrt {1-\sin ^{2}y}}}={\frac {1}{\sqrt {1-x^{2}}}}}
.
Analogicky pro
arccos
x
{\displaystyle \arccos x}
.
Funkce arkus tangens a arkus kotangens
editovat
Je-li
f
(
x
)
=
a
r
c
t
g
x
{\displaystyle f(x)=\mathop {\rm {arctg}} x}
a
g
(
x
)
=
a
r
c
c
o
t
g
x
{\displaystyle g(x)=\mathop {\rm {arccotg}} x}
, pak
f
′
(
x
)
=
1
1
+
x
2
{\displaystyle f'(x)={\frac {1}{1+x^{2}}}}
a
g
′
(
x
)
=
−
1
1
+
x
2
{\displaystyle g'(x)=-{\frac {1}{1+x^{2}}}}
.
Zcela analogicky předchozím.
Je-li
f
(
x
)
=
e
x
{\displaystyle f(x)=e^{x}}
, pak
f
′
(
x
)
=
e
x
{\displaystyle f'(x)=e^{x}}
.
f
′
(
x
)
=
lim
h
→
0
e
x
+
h
−
e
x
h
=
e
x
⋅
lim
h
→
0
e
h
−
1
h
{\displaystyle f'(x)=\lim \limits _{h\rightarrow 0}{\frac {e^{x+h}-e^{x}}{h}}=e^{x}\cdot \lim \limits _{h\rightarrow 0}{\frac {e^{h}-1}{h}}}
. Protože
(
1
+
1
n
+
1
)
n
+
1
≤
e
≤
(
1
+
1
n
−
1
)
n
{\displaystyle \left(1+{\frac {1}{n+1}}\right)^{n+1}\leq e\leq \left(1+{\frac {1}{n-1}}\right)^{n}}
, platí pro všechna
h
∈
R
+
{\displaystyle h\in \mathbb {R} ^{+}}
(
1
+
1
n
+
1
)
(
n
+
1
)
h
≤
e
h
≤
(
1
+
1
n
−
1
)
n
h
{\displaystyle \left(1+{\frac {1}{n+1}}\right)^{(n+1)h}\leq e^{h}\leq \left(1+{\frac {1}{n-1}}\right)^{nh}}
. Nechť
0
<
h
<
1
{\displaystyle 0<h<1}
. Zvolme
n
∈
N
{\displaystyle n\in \mathbb {N} }
takové, aby platilo
n
≤
1
h
<
n
+
1
{\displaystyle n\leq {\frac {1}{h}}<n+1}
, tedy
1
n
+
1
<
h
≤
1
n
{\displaystyle {\frac {1}{n+1}}<h\leq {\frac {1}{n}}}
. Pak ale dostáváme:
1
+
1
n
+
1
≤
(
1
+
1
n
+
1
)
(
n
+
1
)
h
≤
e
h
≤
(
1
+
1
n
−
1
)
n
h
≤
1
+
1
n
−
1
{\displaystyle 1+{\frac {1}{n+1}}\leq \left(1+{\frac {1}{n+1}}\right)^{(n+1)h}\leq e^{h}\leq \left(1+{\frac {1}{n-1}}\right)^{nh}\leq 1+{\frac {1}{n-1}}}
, tedy
1
n
+
1
≤
e
h
−
1
≤
1
n
−
1
{\displaystyle {\frac {1}{n+1}}\leq e^{h}-1\leq {\frac {1}{n-1}}}
. Vynásobením celé nerovnice
1
h
{\displaystyle {\frac {1}{h}}}
dostaváme:
1
h
n
+
1
≤
e
h
−
1
h
≤
1
h
n
−
1
{\displaystyle {\frac {\frac {1}{h}}{n+1}}\leq {\frac {e^{h}-1}{h}}\leq {\frac {\frac {1}{h}}{n-1}}}
a po úprávách máme
1
−
1
n
+
1
=
n
n
+
1
≤
1
h
n
+
1
≤
e
h
−
1
h
≤
1
h
n
−
1
≤
n
+
1
n
−
1
=
1
+
2
n
−
1
{\displaystyle 1-{\frac {1}{n+1}}={\frac {n}{n+1}}\leq {\frac {\frac {1}{h}}{n+1}}\leq {\frac {e^{h}-1}{h}}\leq {\frac {\frac {1}{h}}{n-1}}\leq {\frac {n+1}{n-1}}=1+{\frac {2}{n-1}}}
. Limitním přechodem pro
n
→
∞
{\displaystyle n\rightarrow \infty }
, resp.
h
→
0
+
{\displaystyle h\rightarrow 0_{+}}
dostáváme
lim
h
→
0
+
e
h
−
1
h
=
1
{\displaystyle \lim \limits _{h\rightarrow 0_{+}}{\frac {e^{h}-1}{h}}=1}
. Obdobně by se to dokázalo pro
h
∈
R
−
{\displaystyle h\in \mathbb {R} ^{-}}
, a tedy celkem dostáváme tvrzení.
Je-li
f
(
x
)
=
ln
x
{\displaystyle f(x)=\ln x}
, pak
f
′
(
x
)
=
1
x
{\displaystyle f'(x)={\frac {1}{x}}}
.
(ln e(x))' = 1/(x*ln (e))
Zcela analogicky předchozím důkazům pro derivaci inverzních funkcí.